Batteries get a quick charge with new anode technology from Argonne

Argonne National Laboratory, Argonne, Illinois...Image via Wikipediatitanium(IV) oxideImage via WikipediaA breakthrough in components for next-generation batteries could come from special materials that transform their structure to perform better over time. A team of researchers at the U.S. Department of Energy's Argonne National Laboratory, led by Argonne nanoscientist Tijana Rajh and battery expert Christopher Johnson, discovered that nanotubes composed of titanium dioxide can switch their phase as a battery is cycled, gradually boosting their operational capacity. Laboratory tests showed that new batteries produced with this material could be recharged up to half of their original capacity in less than 30 seconds. By switching out conventional graphite anodes for ones composed of the titanium nanotubes, Rajh and her colleagues witnessed a surprising phenomenon. As the battery cycled through several charges and discharges, its internal structure began to orient itself in a way that dramatically improved the battery's performance. ……. The reason that titanium dioxide seemed like an implausible solution for battery development lies in the amorphous nature of the material. Because amorphous materials have no internal order, they lack the special electronic properties of highly ordered crystalline materials. However, amorphous materials have not been known to undergo such profound structural transformations during cycling, according to Rajh. Most of the known battery materials undergo the opposite transition: they start out as highly crystalline and pulverize to an amorphous state upon cycling. via Argonne National Laboratory
Enhanced by Zemanta

Comments

Popular posts from this blog

Panasonic to begin mass-production of long-life Li-ion battery system for solar-powered homes in Europe

Short notes on Open Access, Peer review & (insane) publications

Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries